Nephrology Research


The research program within Boston Children's Hospital's Division of Nephrology conducts both basic and clinical research in transplantation biology, kidney development, nephrotic syndrome, and autosomal recessive polycystic disease of the kidney. The heads of our key laboratories also hold faculty appointments at Harvard Medical School.

Recognizing that more than half of children with kidney failure have developmental anomalies, the division has assembled a very large developmental and regenerative biology team. We also have created a pharmacogenomics group to take advantage of the remarkable breakthroughs of modern genomics and customize treatments to each child.

Current nephrology research projects

Genetic testing for nephrotic syndrome and FSGS

Our researchers, together with collaborators, have identified multiple genetic mutations associated with segmental glomerulosclerosis (FSGS), a devastating form of nephrotic syndrome that is the second leading cause of kidney failure in children. Based on this research, we now offer a diagnostic test panel for nephrotic syndrome and FSGS that covers more than two dozen genes.

Our team is also using the genetic information to develop better treatments for FSGS and nephrotic syndrome. For example, a study in the lab of our division chief Friedhelm Hildebrandt, MD, identified genetic mutations that involve Coenzyme Q-10. A clinical trial led by Ankana Daga, MBBS, will give Coenzyme Q-10 to children with nephrotic syndrome to see if it improves their disease course.

Understanding kidney self-repair

End-stage kidney disease often begins with injury to podocytes, highly specialized cells that intermingle with the capillaries and filter the blood, maintaining the proper water and salt balance. The lab of Jordan Kreidberg, MD, PhD, has been trying to understand how kidneys and podocytes naturally maintain themselves. The team recently identified a master genetic program and a key regulator called WT-1 that appears to orchestrate podocytes’ innate injury-repair response. Kreidberg and his colleagues continue to study WT1 and other genetic factors in podocyte injury to better understand the repair process and identify potential treatments for FSGS and kidney failure due to diabetes or hypertension.

Improving outcomes of kidney transplant

The Transplant Research Program is conducting a variety of studies to improve the longevity of transplanted organs and better identify patients at risk for complications. One set of studies is looking for better ways to monitor transplant recipients for organ failure and rejection through the use of urinary biomarkers. David Briscoe, MB, ChB, and other researchers are using a novel platform to test the urine of transplant recipients in an automated, quick, and reproducible manner, measuring the balance between harmful inflammation and helpful immunoregulation. Urine biomarker screening could avoid the need for kidney biopsies to monitor children and prevent organ rejection. The technique is in early clinical testing with over 500 kidney transplant patients so far.

For information on the nephrology Transplant Research Program, please visit our Transplant Research Program page.

Kidney stone genetics and prevention

Recent research by Friedhelm Hildebrandt, MD, found that a surprising 21 percent of children with kidney stones have a causative single-gene mutation. Knowing the mutation can often change therapy. For example, certain stone-causing mutations have been associated with other treatable medical complications that clinicians can screen for, such as eye problems or hearing loss.

Michelle Baum, MD, co-director of the Kidney Stone Program, hopes that care for kidney stone disease will one day be focused on preventing stone formation, rather dealing with its consequences. She is helping to launch clinical trials of new medications to treat primary hyperoxaluria (PH), one of the rarest, most devastating causes of kidney stones as well as other organ complications. For many years, PH could only be treated by kidney-liver transplant. Dr. Baum is a primary investigator in a multicenter clinical study that aims to correct the genetic error in metabolism that causes PH using RNA inhibitor therapy.