Clinical and genetic heterogeneity in autosomal recessive nemaline myopathy

Carina Wallgren-Petterssona,\textordmasculine, Katarina Pelina, Pirta Hilpeläa, Kati Donnera, Berardino Porfiriob, Claudio Grazianob, Kathryn J. Swobodac, Michel Fardeaud, J. Andoni Urtizberead, Francesco Muntonie, Caroline Sewrye, Victor Dubowitze, Susan Iannacconef, Carlo Minettig, Marina Pedemonteg, Marco Serig, Roberto Cusanog, Martin Lammensh, Avril Castagna-Sloanei, Alan H. Beggsj, Nigel G. Laingj, Albert de la Chapellea, k

aDepartment of Medical Genetics, University of Helsinki, and The Folkhalsan Institute of Genetics, Helsinki, Finland
bDepartment of Clinical Physiopathology, Human Genetics Unit, Florence, Italy
cGenetics Division, Children's Hospital and Harvard Medical School, Boston, USA
dInstitut de Myologie, Hôpital de la Salpêtrière, Paris, France
eImperial College School of Medicine, Hammersmith Hospital, London, UK
fTexas Scottish Rite Hospital for Children, Dallas, Texas, USA
gGaslini Institute, Genoa, Italy
hDepartment of Neuropathology, KU Leuven, Belgium
iThe Hospital for Sick Children and The Toronto Hospital, University of Toronto, Toronto, Canada
jAustralian Neuromuscular Research Institute, QEII Medical Centre, Nedlands, Western Australia
kHuman Cancer Genetics Program, The Ohio State University, Columbus, Ohio, USA

Received 9 March 1999; received in revised form 6 May 1999; accepted 18 May 1999

Abstract

Autosomal recessive nemaline (rod) myopathy is clinically and genetically heterogeneous. A clinically distinct, typical form, with onset in infancy and a non-progressive or slowly progressive course, has been assigned to a region on chromosome 2q22 harbouring the nebulin gene. Mutations have now been found in this gene, confirming its causative role. The gene for slow tropomyosin \textit{TPM3} on chromosome 1q21, previously found to cause a dominantly inherited form, has recently been found to be homozygously mutated in one severe consanguineous case. Here we wished to determine the degree of genetic homogeneity or heterogeneity of autosomal recessive nemaline myopathy by linkage analysis of 45 families from 10 countries. Forty-one of the families showed linkage results compatible with linkage to markers in the nebulin region, the highest combined lod scores at zero recombination being 14.13 for the marker D2S2236. We found no indication of genetic heterogeneity for the typical form of nemaline myopathy. In four families with more severe forms of nemaline myopathy, however, linkage to both the nebulin and the \textit{TPM3} locus was excluded. Our results indicate that at least three genetic loci exist for autosomal recessive nemaline myopathy. Studies of additional families are needed to localise the as yet unknown causative genes, and to fully elucidate genotype-phenotype correlations. © 1999 Elsevier Science B.V. All rights reserved.

Keywords: Nemaline myopathy; Nemaline (rod) myopathy; Congenital myopathy; Autosomal recessive; Genetic heterogeneity; Clinical forms; Genetic loci; Locus heterogeneity

1. Introduction

In familial cases of nemaline myopathy, the mode of inheritance is commonly autosomal recessive, although a few instances of autosomal dominant inheritance have been documented, including one extended family with male-to-male transmission [1,2]. No exact figures are available regarding the proportions of familial versus sporadic cases, but a rough approximation, based on the 150 families currently represented in the ENMC International database would be: familial cases 37% (likely autosomal recessive 24%, likely autosomal dominant 13%) and sporadic cases 63%. It is as yet unknown what proportion of the sporadic cases is due to autosomal recessive inheritance, and how
many might be due to new dominant mutations [3]. The cardinal features of all nemaline myopathies are muscle weakness and the presence of nemaline (rod) bodies in the muscle fibres [4–6]. The nemaline or rod bodies are derived from the Z disc of striated muscle and composed of Z-disc proteins [7–9].

Clinically, attempts have been made to classify the nemaline myopathies [10–13]. It appears that the disease spectrum forms a continuum, from prenatal, very severe forms initially to late distal involvement. Slowly progressive or non-progressive course

Exclusion criteria

At birth
- No spontaneous movements
- No spontaneous respirations
- Contraindications
- Fractures
- Adult or late childhood onset

Associated features:
- Cardiomyopathy
- Ophthalmoplegia
- Unusual distribution of weakness
- Intranuclear nemaline bodies

One of those would be defining any case of nemaline myopathy where the patient has deceased in infancy as being necessarily severe; survival in infancy will depend on the treatment provided [14] and there are several reports of patients with mild forms of nemaline myopathy suddenly going into respiratory failure because of undiagnosed insidious hypoventilation [15–19]. Adult-onset forms, with no dysmorphic features secondary to muscle weakness, and often with a progressive course, may not be genetically caused and are beyond the scope of this paper.

To date, two different genetic loci have been implicated in autosomal recessive nemaline myopathy. The typical form (Table 1) showed linkage to a region on chromosome 2q22 harbouring the nebulin gene [20,21], and, recently, mutations have been found in five unrelated families, confirming that nebulin is the causative gene [22]. At another locus, on chromosome 1q21, homozygosity for a nonsense mutation was found in the alpha-tropomyosin gene \(\text{TPM3} \) in one patient with consanguineous parents [23]. The family, however, has been lost to follow-up, and the parents, healthy by history, have therefore not been examined clinically nor investigated for the mutation. Thus, although autosomal recessive inheritance appears likely, homozygosity for a dominant mutation cannot be excluded. This boy had an intermediate form of nemaline myopathy in that he was said to have had normal muscle strength at birth, but was still unable to sit when he died of pneumonia at the age of 21 months. His muscle biopsy showed slight predominance of type 2 fibres, which were larger than type 1 fibres, and nemaline bodies present in smaller type 1 fibres only. The histological findings are comparable to those of the Australian family with a dominantly inherited mutation in the \(\text{TPM3} \) gene [1,2].

In an effort to determine the degree of genetic homogeneity or heterogeneity of autosomal recessive nemaline myopathy we present a linkage study of 45 families from different parts of the world. Our results show that there is at least a third locus for autosomal recessive nemaline myopathy, reinforcing the view that the nemaline myopathies are genetically heterogeneous.

2. Patients and clinical definitions

Linkage studies were performed in 45 families from 10 different countries. Twenty-five families were multiplex families where unaffected parents had two or more children affected by nemaline myopathy. The remaining 20 families included sporadic cases with the affected child having at least one healthy sibling, or, in three instances, consanguineous parents, the family structure thus permitting linkage analysis.

There were 26 families with probands who met our criteria of the typical form of autosomal recessive nemaline myopathy (Table 1). Sixteen of these were multiplex.

Table 1

The typical form of nemaline myopathy

<table>
<thead>
<tr>
<th>Inclusion criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onset in infancy</td>
</tr>
<tr>
<td>Weakness especially pronounced in the facial, bulbar and respiratory muscles, and in the neck flexors</td>
</tr>
<tr>
<td>Proximal > distal weakness initially</td>
</tr>
<tr>
<td>Milestones delayed, but usually reached</td>
</tr>
<tr>
<td>Later distal involvement</td>
</tr>
<tr>
<td>Slowly progressive or non-progressive course</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exclusion criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>At birth</td>
</tr>
<tr>
<td>No spontaneous movements</td>
</tr>
<tr>
<td>No spontaneous respiration</td>
</tr>
<tr>
<td>Contraindications</td>
</tr>
<tr>
<td>Fractures</td>
</tr>
<tr>
<td>Adult or late childhood onset</td>
</tr>
</tbody>
</table>

Associated features:
- Cardiomyopathy
- Ophthalmoplegia
- Unusual distribution of weakness
- Intranuclear nemaline bodies

Table 2

Severe nemaline myopathy

<table>
<thead>
<tr>
<th>Inclusion criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Features</td>
</tr>
<tr>
<td>No spontaneous movements neonatally</td>
</tr>
<tr>
<td>No spontaneous respiration neonatally</td>
</tr>
<tr>
<td>Contraindications at birth</td>
</tr>
<tr>
<td>Fractures at birth</td>
</tr>
<tr>
<td>Unable to achieve respiratory independence</td>
</tr>
<tr>
<td>Unable to achieve sitting</td>
</tr>
<tr>
<td>Unable to achieve walking</td>
</tr>
</tbody>
</table>

Associated features:
- Cardiomyopathy
- Ophthalmoplegia
- Unusual distribution of weakness
- Intranuclear nemaline bodies
Among the 10 families of typical sporadic cases there were two in which the parents were consanguineous.

The remaining 19 families showed other types of nemaline myopathy; in 11 the patients fulfilled the criteria in Table 2 and were classified as having severe nemaline myopathy. Four cases with unusual associated features (Tables 1 and 2, exclusion criteria) were assigned to the category of ‘other forms’, and four were not classified because the available clinical data were insufficient. Among these 19 families, there were nine with affected sib pairs, and in one of these families, the parents were consanguineous. A further consanguineous couple had a single affected child, and in the remaining nine families there were singleton patients with healthy sibs.

2.1. The typical form of autosomal recessive nemaline myopathy

Defined here as follows [3,17,24,25] (Table 1): onset is in infancy, the infant often being floppy at birth, with feeding difficulties and insufficient respiration. The muscle weakness is generalised, but most pronounced in the facial, neck flexor, bulbar, and respiratory muscles. The proximal muscles of the limbs are initially weaker than the distal ones, but later, there is usually also a distal involvement, the dorsiflexors of the feet being especially severely affected. The extra-ocular muscles are spared.

The facies is myopathic, the palate high-arched, and the gag reflex is typically absent. The gait is waddling and the build is usually slender. The spine is hyperlordotic, or sometimes rigid, and scoliosis is common, with onset usually in the prepubertal period of rapid growth. Tendon reflexes are weak or absent. Gross motor activity is slow whereas fine motor activity is normal. Chest deformities are common, even in small children, and contractures and deformities of the joints often develop over time. Intelligence is normal, and a small series showed a skew towards higher levels [17]. Cardiac contractility is usually normal [3,26] and there is no involvement of smooth muscle. Nerve conduction velocities are normal, and the electromyographic findings usually progress from normal to ‘myopathic’ in proximal muscles, and from normal over ‘myopathic’ to ‘neurogenic’ in distal
muscles, reflecting segmental degeneration and reinnervation of muscle fibres [25]. Ultrasonography of muscles shows high echogenicity, computed tomography shows low density of muscles with preservation of volume, and MRI commonly reveals fatty infiltration over time [24]. Serum levels of creatine kinase are normal or slightly elevated.

Muscle biopsy shows the presence of nemaline bodies and often both predominance of type 1 fibres and deficiency of one or both subtypes of type 2 fibres [27,28]. On follow-up, unspecific myopathic changes progress slowly over the years. There are no dystrophic changes, nor is there any inflammatory component. Patients who remain ambulant often have hypertrophy of a population of muscle fibres [28].

Affected children usually survive infancy if actively treated, and achieve motor milestones, albeit later than normal. The chief clinical concerns are the respiratory function, the swallowing difficulties with associated risk of aspiration, and the possible development of scoliosis [3,5]. Many patients remain ambulant as adults.

2.2. Severe nemaline myopathy

Severe nemaline myopathy constitutes a category of patients who at birth had one or more of the following clinical features: absence of spontaneous movements or of spontaneous respiration, or presence of contractures or fractures. The prognosis is often, but not uniformly, poor [14]. Also included in this category were patients who breathed at birth but who in early childhood became permanently ventilator-dependent, and those unable to achieve sitting or walking (Table 2).

Among the 11 families classified as showing severe nemaline myopathy, linkage to the 2q22 locus was excluded in four. In family 1 (Figs. 2 and 3), consanguineous parents had two children with contractures of several joints and lack of antigravity movements at birth. The children died at 5
weeks and 10 months, respectively [29]. In family 2, the clinical picture was similar, and the affected sibs died at ages of 1 and 4 days, respectively. Two of the three affected children of family 3, had severe hypotonia, clubfeet and respiratory insufficiency, and died of respiratory failure within a month of birth. The first child of this family, from whom no sample was available for study, had no contractures, but was ventilated from the age of 2 weeks and died at 18 months. In family 4, one of the affected, severely hypotonic sibs was still alive at age 10 years but was unable to sit. The other child died at the age of 5 years.

In the remaining seven families in the category of severe nemaline myopathy, linkage to the 2q22 locus could not be excluded. The clinical picture in these families was heterogeneous, but fulfilled the criteria in Table 2.

2.3. Other forms of nemaline myopathy

Other forms of nemaline myopathy are defined as those with one or more aberrant features rarely associated with nemaline myopathy, such as ophthalmoplegia, cardiomyo-
pathy or intranuclear nemaline bodies (Tables 1 and 2, exclusion criteria).

3. Methods

The following polymorphic microsatellite markers were used in the linkage analyses: D2S2324, D2S2277, D2S2275, D2S2236, D2S2299, D2S321 for the nebulin locus, D2S300, D2S384, TTN-AC and D2S364 for the titin locus, D15S987, TPM1STR and D15S1018 for the tropomyosin 1 locus, D11S1965, D11S913, D11S916 and D11S906 for the alpha-actinin 2 locus, D19S221, D19S226, D19S411 and D19S410 for the tropomyosin 4 locus, ACTN2-AC for the tropomyosin 3 locus, D19S221, D19S226, D19S411 and D19S410 for the tropomyosin 4 locus, ACTN2-AC for the tropomyosin 3 locus, D19S226, 99L21sp6CA for the tropomyosin locus, D15S987, TPM1STR and D15S1018 for the tropomyosin locus, D11S1965, D11S913, D11S916 and D11S906 for the alpha-actinin 3 locus, TTN-AC (Labeit et al., unpublished data), TPM1STR [30], and ACTN2-AC (AC M86804) [31] are polymorphic intragenic microsatellite markers, 99L21sp6CA is a polymorphic AC-repeat 0.5 cM from D9S163 [32]. All the other markers were from Génethon [33].

Polyacrylamide chain reaction conditions were as described previously [21]. The PCR products were run on 5–6% polyacrylamide gels, and the alleles were visualised by silver staining [34]. The alleles were numbered consecutively, ‘1’ being the largest allele.

Two-point LOD-score calculations were performed by use of the MLINK option of the LINKAGE programme package [35–37].

Where linkage analysis at the nebulin locus showed exclusion, linkage studies were extended to other potential candidate loci, i.e. those of the sarcomeric proteins titin, the tropomyosins 1–4 and the alpha-actinins 2 and 3. Mutations in the TPM3 gene were excluded by SSCP screening in all families, and in family 3, the TPM1 gene was sequenced in an unsuccessful attempt to find a mutation.

4. Results

The maximum lod scores of individual families at the 2q22 locus are presented in Table 3. Although none of the individual families had a family structure providing lod scores high enough for significant linkage, families with the typical form all showed results compatible with linkage to the nebulin locus on chromosome 2q22. For all the 16 multiplex families with this form (in which the mode of inheritance is most likely to be autosomal recessive), the marker D2S2236 gave the highest combined two-point lod score of 9.94 at zero recombination (Table 4). Combined lod scores of all the 41 families with linkage results compatible with linkage to the nebulin locus, 26 of which showed the typical form, seven severe forms and four other forms, and four of which could not be classified, showed a maximum of 14.13 for the marker D2S2236 at zero recombination (Table 5). Through the detection of recombinations in two multiplex families with the typical form, the linkage region was narrowed down to 4 cM (Fig. 1). Lod score tables on the individual families are available on request.

Linkage to the nebulin locus was excluded in four families with severe forms of nemaline myopathy (Fig. 2). In these four families, linkage to the TPM3 locus was also excluded (Table 6). Linkage analysis with regard to six other potential candidate loci did not yield any suggestion of the families showing linkage to the same locus. In one of the four families, family 3, linkage to all but the ACTN2 and the TPM1 loci was excluded, but ACTN2 gave negative lod scores and sequencing of the TPM1 gene in this family disclosed no mutations. In two further families, linkage to all but two of the loci was excluded, and in the fourth, linkage analysis gave slightly positive lod scores at four different loci (Table 6, Fig. 3).

5. Discussion

This study provides further evidence for autosomal recessive nemaline myopathy being clinically and genetically heterogeneous.

On clinical grounds, we defined a typical form of autosomal recessive nemaline myopathy, a category of severe forms, and a third category of ‘other forms’, comprising those with unusual features differentiating them from the other two categories. All 26 families with the typical form and 15 families with severe or other forms showed linkage results compatible with linkage to the nebulin locus, whereas four families with severe forms showed exclusion of linkage to this locus.

The typical form was shown to be tightly linked to a

Table 4

<table>
<thead>
<tr>
<th>Locus</th>
<th>0.0</th>
<th>0.01</th>
<th>0.05</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>D2S2324</td>
<td>-∞</td>
<td>3.93</td>
<td>4.55</td>
<td>4.15</td>
<td>2.84</td>
<td>1.43</td>
<td>0.38</td>
</tr>
<tr>
<td>D2S2277</td>
<td>-∞</td>
<td>2.13</td>
<td>4.03</td>
<td>4.10</td>
<td>3.04</td>
<td>1.62</td>
<td>0.46</td>
</tr>
<tr>
<td>D2S2275</td>
<td>8.30</td>
<td>8.08</td>
<td>7.20</td>
<td>6.07</td>
<td>3.89</td>
<td>1.92</td>
<td>0.54</td>
</tr>
<tr>
<td>D2S2236</td>
<td>9.94</td>
<td>9.70</td>
<td>8.70</td>
<td>7.39</td>
<td>4.87</td>
<td>2.48</td>
<td>0.67</td>
</tr>
<tr>
<td>D2S2299</td>
<td>-∞</td>
<td>6.39</td>
<td>6.26</td>
<td>5.48</td>
<td>3.67</td>
<td>1.86</td>
<td>0.51</td>
</tr>
<tr>
<td>D2S321</td>
<td>3.41</td>
<td>3.33</td>
<td>2.98</td>
<td>2.54</td>
<td>1.66</td>
<td>0.84</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Table 5

<table>
<thead>
<tr>
<th>Locus</th>
<th>0.0</th>
<th>0.01</th>
<th>0.05</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>D2S2324</td>
<td>-∞</td>
<td>6.61</td>
<td>6.89</td>
<td>6.09</td>
<td>4.01</td>
<td>2.03</td>
<td>0.56</td>
</tr>
<tr>
<td>D2S2277</td>
<td>-∞</td>
<td>5.04</td>
<td>6.55</td>
<td>6.16</td>
<td>4.28</td>
<td>2.22</td>
<td>0.63</td>
</tr>
<tr>
<td>D2S2275</td>
<td>13.65</td>
<td>13.28</td>
<td>11.71</td>
<td>9.79</td>
<td>6.16</td>
<td>3.04</td>
<td>0.83</td>
</tr>
<tr>
<td>D2S2236</td>
<td>14.13</td>
<td>13.77</td>
<td>12.27</td>
<td>10.39</td>
<td>6.72</td>
<td>3.42</td>
<td>0.96</td>
</tr>
<tr>
<td>D2S2299</td>
<td>-∞</td>
<td>10.78</td>
<td>10.02</td>
<td>8.54</td>
<td>5.47</td>
<td>2.76</td>
<td>0.77</td>
</tr>
<tr>
<td>D2S321</td>
<td>4.23</td>
<td>4.12</td>
<td>3.68</td>
<td>3.13</td>
<td>2.03</td>
<td>1.05</td>
<td>0.29</td>
</tr>
</tbody>
</table>
region on chromosome 2q22, now restricted to 4 cm, harbouring the nebulin gene, in which mutations have recently been found [22]. In the ENMC International Database, currently containing entries on some 180 patients, the majority of cases have the typical form. The proportions may, however, be biased by fatal neonatal cases and very mild late-onset cases being underdiagnosed.

Future studies will show whether all cases of the typical form are caused by mutations in the nebulin gene, and whether any of the clinically different forms will be shown to be due to pathogenetically different mutations in this gene. In all families in which nebulin mutations have been found to date, the mutations have been different [22], and further mutation detection in this very large gene will require great effort.

The clinical categories of ‘severe nemaline myopathy’ and ‘other forms of nemaline myopathy’ were defined on the basis of two hypotheses, related to possible pathogenetic mechanisms. The first one is that the severe end of the spectrum might represent one or more distinct entities, differing molecularly, genetically and pathogenetically from the typical form. This refers to cases where the foetus or the new-born infant has no spontaneous movements at all, in many including no respiratory effort. In some of these cases, the muscle biopsy has shown lack of normal muscle structure [38], and some have been arthrogrypotic [29]. Our results excluding linkage to the nebulin locus in four informative families with severe nemaline myopathy support this hypothesis. The lack of exclusion in the other seven families with severe nemaline myopathy do not argue against it, especially in view of the small family sizes.

The other hypothesis relates to unusual associated features perhaps indicating different causative mechanisms. An example of this would be patients with intranuclear nemaline bodies. The families included in this category were not informative enough for this hypothesis to be tested by linkage studies.

In both categories, informative families are currently too few and clinically too heterogeneous for a genome-wide search for linkage to be likely to succeed.

For the families in the category of severe nemaline myopathy in which linkage to the nebulin locus was excluded, linkage analysis extended to seven other candidate loci, i.e. those for titin, the tropomyosins, and two of the alpha-actinin genes, revealed no common locus of linkage. In particular, the families showed exclusion of linkage to the TPM3 locus also, where one patient, clinically fitting into our category of severe nemaline myopathy, was previously reported to be homozygous for a nonsense mutation [23]. Due to small family size, exclusion was, however, tentative. The slightly positive lod scores in these families at various loci (Table 6) can also only be regarded as tentative. In family 3, showing results compatible with linkage to the tropomyosin locus on 15q22, mutations in the TPM1 gene were sought but none were found. Further candidate loci and genes will be analysed as they become known.

6. Conclusion

Our results indicate that there are at least three genetic loci for autosomal recessive nemaline myopathy, and that locus heterogeneity explains at least some of the clinical heterogeneity in autosomal recessive nemaline myopathy. Studies of further families and genetic loci are needed to identify the remaining causative genes. Full analysis of the relationship between the clinical disease spectrum and the molecular genetic cause awaits further mutational results.

7. Note added in proof

Recently, mutations in a third gene have been found to cause nemaline myopathy and actin myopathy (Nowak et
al., Nature Genetics, accepted for publication). As some of the families described in the current paper show exclusion of linkage to this as well as the other two loci, it appears that there are at least four genes causing nemaline myopathy.

Acknowledgements

We would like to thank the families with nemaline myopathy for giving their samples for our research, and the following clinicians for diagnosing some of the cases and/or forwarding samples to us: P. Barth, C. Bönemann, D. Chitayat, A. Clarke, N. Goemans, F. Juul Hansen, F. Hanefeld, H. Hughes, I. Hughes, I. Penisson-Besnier, C. Philippe, I.M. van Langen, H. Marschner-Schäfer, A. Manzur, L. Morandi, G. Rondini, S. Ruyle, J. Sampson, R. Sutphen, C. Vial, M. de Visser, T. Voit, S. Wallace. We thank Dr. Siegfried Labeit, EMBL, Heidelberg, for contributing the marker TTN-AC. We are grateful to the ENMC International Consortium on Nemaline Myopathy for pleasant collaboration. Many members, and other contributors, are acknowledged for collecting samples not used in this study. KP, PH and KD were

References

[25] Wallgren-Pettersson C, Sainio K, Salmi T. Electromyography in

[26] Airenne AL, Wallgren-Pettersson C. Normal cardiac contractility in
patients with congenital nemaline myopathy. Neuropediatrics

[27] Dubowitz V. Muscle biopsy: a practical approach, second ed. London:

[28] Wallgren-Pettersson C, Rapola J, Donner M. Pathology of congenital
257.

[29] Lammens M, Moerman Ph, Fryns JP, Lemmens F, van de Kamp GM,
Goemans N, Dom R. Fetal akinesia sequence caused by nemaline

[30] Thierfelder L, Watkins H, MacRae C, et al. α-Tropomyosin and
cardiac troponin T mutations cause familial hypertrophic cardiomyo-

[31] Beggs AH, Phillips HA, Kozman H, et al. A (CA)n repeat polymor-
phism for the skeletal muscle alpha-actinin gene ACTN2 and its local-
isation on the CEPH consortium linkage map of chromosome 1.

Integrated high-resolution BAC, P1, and transcript map of the CHH

154.

[34] Bassam BJ, Caetano-Anolles G, Gresshoff PM. Fast and sensitive
silver staining of DNA in polyacrylamide gels. Anal Biochem

[35] Lathrop GM, Lalouel JM, Julier C, Ott J. Strategies for multilocus

[36] Lathrop GM, Lalouel JM. Easy calculations of LOD scores and
465.

[37] Lathrop GM, Lalouel JM, White RL. Construction of human genetic
linkage maps: likelihood calculations for multilocus analysis. Genet

[38] Schmalbruch H, Kamienecka Z, Arroe M. Early fatal nemaline
myopathy: case report and review. Dev Med Child Neurol 1987;
29:784–804.