Performance Validity Testing and Management of Prolonged Recovery (in Youth)

Michael W. Kirkwood, PhD, ABPP/CN

Background

- Clinical neuropsychologist at Children's Hospital Colorado
- Founded Concussion Program in 2003
 - Pediatric focused
 - Not sport specific (~50% athletes)
 - Interdisciplinary (neuropsychology, sports medicine, rehabilitation medicine, athletic training, psychology, physical therapy, emergency medicine, neurosurgery, etc.)
- Interest in validity testing arose out of concerns that certain kids were not providing adequate effort on neuropsychological exam
 - Using and researching validity tests in kids with mild TBI for last 10 years

Children's Hospital Colorado Concussion Team Collaborators
- David Baker, PsyD
- Jerry Clayton, PhD
- Amy Conroy, PsyD, ABPP/CN
- Katherine Dahab, MD
- Mike Dichter, MD
- Joe Grubenhoff, MD
- Mike Handler, MD
- Todd Hankinson, MD
- Scott Laker, MD
- Jacki Murray, RN
- Brett O'Neill, MD
- Robin Patterson, PhD
- Wendy Pierce, MD
- Aaron Provance, MD
- Anne Stratton, MD
- Joe Wathen, MD
- Pam Wilson, MD
- Bridget Younger, MEd, ATC

Acknowledgements

Student Collaborators
- Robert Blaha, MA
- Cassie Green, MA
- David Hargrave, MA
- Christa Hutaff Lee, PhD
- Jennifer Larson, PhD

External Mild TBI Collaborators & Influences
- Bill Barr, PhD, ABPP/CN
- Brian Brooks, PhD
- Kevin Guskiewicz, PhD
- Grant Iwerson, PhD
- Mike McCrea, PhD, ABPP/CN
- Chris Randolph, PhD, ABPP/CN
- Gary Taylor, PhD, ABPP/CN
- Keith Yeates, PhD, ABPP/CN
Financial Disclosure

- No relevant conflicts of interest

 - Employment: Children's Hospital Colorado

 - Consulting: No financial payment for mild TBI roles. Have served on CDC Pediatric Mild TBI Expert Panel and the Mild TBI Concussion Work Group, NINDS Common Data Elements Project. Have received payment for consulting work on several non-TBI related projects.

 - Stock ownership: No relevant investments.

 - Research Support: Principal investigator, co-investigator, or collaborator on TBI grants funded by numerous organizations including CDC, NIDRR, NIH, PCORI, Colorado TBI Trust Fund, Children's Hospital.

 - Honors: Have received honoraria and expense reimbursement from multiple institutions and professional scientific bodies for presenting pediatric TBI work at meetings, conferences, and symposiums.

- Financial disclosure

 - Royalties: I receive royalties on a pediatric mild TBI book I co-edited and will receive royalties on a pediatric validity testing book that I edited (publication: summer 2015).

Objective Methods to Detect Noncredible Responding by Examinee

- Performance Validity Tests (PVTs): Used to detect inadequate effort or noncredible performance during testing

- Symptom Validity Tests (SVTs): Used to detect noncredible responding during self-report measures

Relevance

- Over last several decades, noncredible performance has become a major area of focus in psychology/neuropsychology

 More than 1,000 scientific articles, 20 comprehensive reviews, a dozen meta-analytic studies, and a dozen textbooks have appeared in adult literature

- Multiple practice organizations have taken position that neuropsychological evaluations should routinely include validity tests

- Two primary areas of relevance for sports settings

1) Baseline testing: Sandbagging

 - Motivation

 * Look worse than you are in the preseason in hopes of being allowed to return to play more quickly after concussion

 * Reasonably well studied (in older athletes)

2) Post-injury testing

 - Motivation

 * Look worse than you are after concussion for any number of reasons…

 * Poorly studied in sports setting. Some work with youth generally. Impressively well studied in non-sport settings with adults.
Baseline Testing

- Computerized cognitive baseline testing
 - Popular
 - Controversy around whether adds incremental value or modifies risk (e.g., Randolph, 2011; Randolph v. Lovell, 2011; Echemendia et al., 2013)

- If used, reasons can see invalid or unreliable test scores need to be understood including….
 - Unplanned / unintentional
 - Psychometric properties of the test (Randolph et al., 2005; Mayers & Redick, 2012; Reach et al., 2013)
 - Group size during testing (Moser et al., 2011; Womble et al., 2012)
 - Supervised vs. unsupervised administration (Rohling, 2011)
 - Aspects of the testing environment (e.g., noise level)
 - Planned by examinee
 - Sandbagging

Sandbagging

- Multiple studies have documented evidence of sandbagging using variety of tests across high school, college, and professional athletes (Rohling et al., 2015)

- How often is it seen?
 - 11% - Hunt et al. (2007)
 - 14% - Darby et al. (2011)
 - 11% - Erdal et al. (2012)
 - 12% - Schatz & Glatts (2013)
 - 18% - Szabo et al. (2013)
 - 13% - Hill et al. (2014)

- Using more liberal criteria to determine invalidity (i.e., failure on one PVT rather than multiple)
 - 26% average across studies

Post-injury Testing

- Much of the concussion clinical management literature has focused on injury-related explanations for persistent postconcussive symptomatology
 - Assumption: when problems seen post-injury, neurologically related to the injury

- Yet, methodologically rigorous outcome studies suggest injury-related difficulties for most people are relatively short-lived when evaluated using objective performance-based tests

- Multiple studies have also now highlighted the importance of non-injury variables in understanding subjectively reported symptoms after mild TBI
• One noninjury reason problems persist after mild TBI is noncredible effort on exams and feigned or exaggerated symptom report

• Arguments I’ve heard why this doesn’t matter for cognitive assessment with athletes or kids:
 • athletes are motivated to return to play so don’t provide noncredible effort
 • kids aren’t sophisticated enough to deceive
 • kids wouldn’t deceive a doctor or if they did it would be obvious

Can children deceive?

• Deception not unique to humans, as also occurs widely in plants and nonhuman animals
• Exists because it has had advantages from an evolutionary perspective and has evolved under strong natural selection pressures

Childhood Deception

• Numerous studies indicate deception is common in childhood, especially in school-aged years
• Great deal of experimental work on topic

<table>
<thead>
<tr>
<th>Age (in years)</th>
<th>Developmental Trends in Childhood Deception</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-6</td>
<td>Minimal evidence to suggest deceptive behavior occurs.</td>
</tr>
<tr>
<td>2-5</td>
<td>Across preschool years, deception increases, primarily to deny transgressions. Fairly basic and unsophisticated lies.</td>
</tr>
<tr>
<td>6-12</td>
<td>Deceit grows more common. Underlying skills needed for more sophisticated deception improve. Kids better able to maintain consistency following lies to avoid self-incrimination.</td>
</tr>
<tr>
<td>13-18</td>
<td>More and more sophisticated lies, consistent with ongoing maturation of higher order cognitive abilities. Likely indistinguishable from adult deception in later teen years.</td>
</tr>
</tbody>
</table>

Adapted from:
So, children can deceive. How often do noncredible presentations actually happen in pediatric neuropsychological evaluations?

Commonplace? Uncommon? Rare? Exist at all?

General Pediatric Clinical Case Series

<table>
<thead>
<tr>
<th>Source</th>
<th>Population</th>
<th>N</th>
<th>Age</th>
<th>PVT</th>
<th>% Noncredible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donkers (2005)</td>
<td>Mixed Neuro</td>
<td>100</td>
<td>6 – 16</td>
<td>TOMM</td>
<td>2%</td>
</tr>
<tr>
<td>Carone (2008)</td>
<td>Moderate- Severe Brain Injury</td>
<td>38</td>
<td>(mean: 11.8)</td>
<td>MSVT</td>
<td>5%</td>
</tr>
<tr>
<td>MacAllister, Nakhchiva, Bender, Karantzoulis, & Carlson (2009)</td>
<td>Epilepsy</td>
<td>60</td>
<td>6 – 17</td>
<td>TOMM</td>
<td>3%</td>
</tr>
<tr>
<td>Green et al. (2010)</td>
<td>Mixed Neuro/Dev</td>
<td>380</td>
<td></td>
<td>WMT</td>
<td>5%</td>
</tr>
<tr>
<td>Green et al. (2010)</td>
<td>Mixed Neuro/Dev</td>
<td>265</td>
<td></td>
<td>MSVT</td>
<td>3%</td>
</tr>
<tr>
<td>Kirk, Harris, Hutaff-Lee, Koelmaj, Immink, & Kirkwood (2011)</td>
<td>Mixed Neuro/Dev</td>
<td>100</td>
<td>5 – 16</td>
<td>TOMM</td>
<td>4%</td>
</tr>
<tr>
<td>Brooks (2012)</td>
<td>Mixed Neuro</td>
<td>100</td>
<td>6 – 19</td>
<td>VSVT</td>
<td>5%</td>
</tr>
<tr>
<td>Plotz, Mosiewicz, Kirkwood, Sherman, & Brooks (in press)</td>
<td>Mixed Neuro</td>
<td>266</td>
<td>5 – 18</td>
<td>TOMM</td>
<td>3%</td>
</tr>
</tbody>
</table>

Pediatric Mild TBI

<table>
<thead>
<tr>
<th>Source</th>
<th>Population</th>
<th>N</th>
<th>Age</th>
<th>PVT</th>
<th>% Noncredible Presentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Children’s Hospital Colorado</td>
<td>All Cause Mild TBI / Concussion (clinical)</td>
<td>1500+ total</td>
<td>8 – 17</td>
<td>MSVT + TOMM Rey FIT Various embedded measure</td>
<td>12 – 19% No difference between sport and nonsport etiology</td>
</tr>
<tr>
<td>Kirkwood & Kirk (2011); Kirkwood et al. (2011); Kirkwood et al. (2012); Kirkwood et al. (2013); Baker et al. (2013); Green et al. (2014); Kirk et al. (2014); Kirkwood et al. (2014)</td>
<td>All Cause Mild TBI / Concussion (clinical)</td>
<td>382</td>
<td>8 – 16</td>
<td>RD6 Digit Span</td>
<td>20% No difference between sport and nonsport etiology</td>
</tr>
</tbody>
</table>
Multiple studies with adults indicate performance on PVTs has significant effect on other tests
- Green et al., 2001; Constantinou et al., 2005; Green, 2007; Lange et al., 2010; Meyer et al., 2011
- In mostly compensation-seeking samples, ~50% variance in neuropsychological test scores explained by PVT performance
- Much more variance than explained by brain injury severity, education, age, etc.

No historic studies in pediatric populations: similar effect?
- Examined in Children's Hospital Colorado mild TBI dataset
- PVT performance accounted for ~40% of the variance on abbreviated neuropsychological battery

Validity test failure in pediatric sample

SO WHAT?

- Multiple studies with adults indicate performance on PVTs has significant effect on other tests
 - Green et al., 2001; Constantinou et al., 2005; Green, 2007; Lange et al., 2010; Meyer et al., 2011
 - In mostly compensation-seeking samples, ~50% variance in neuropsychological test scores explained by PVT performance
 - Much more variance than explained by brain injury severity, education, age, etc.

No historic studies in pediatric populations: similar effect?
- Examined in Children's Hospital Colorado mild TBI dataset
- PVT performance accounted for ~40% of the variance on abbreviated neuropsychological battery

The Implications of Symptom Validity Test Failure for Ability-Based Test Performance in a Pediatric Sample

<table>
<thead>
<tr>
<th>Background and Injury Characteristics of All Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Age (yrs)</td>
</tr>
<tr>
<td>Male</td>
</tr>
<tr>
<td>Education</td>
</tr>
</tbody>
</table>

Support for idea PVT measures effort rather than ability

- No background or injury-related variable differentiated those who passed from those who failed including sport vs. nonsport

Table 5: Descriptive Statistics and Comparisons Between Medical Symptom Validity Test Pass and Fail Groups on Ability-Based Tests

<table>
<thead>
<tr>
<th>Test</th>
<th>Mean Pass</th>
<th>SD Pass</th>
<th>Mean Fail</th>
<th>SD Fail</th>
<th>t-value</th>
<th>df</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAIS Full Scale IQ</td>
<td>75.3</td>
<td>10.6</td>
<td>76.5</td>
<td>10.9</td>
<td>-0.25</td>
<td>6.75</td>
<td>0.00</td>
</tr>
<tr>
<td>Similarities T score</td>
<td>140.2</td>
<td>13.6</td>
<td>140.5</td>
<td>14.0</td>
<td>-0.15</td>
<td>5.25</td>
<td>0.00</td>
</tr>
<tr>
<td>Picture Arrangement score</td>
<td>6.4</td>
<td>0.9</td>
<td>6.4</td>
<td>0.9</td>
<td>-0.01</td>
<td>0.05</td>
<td>1.00</td>
</tr>
<tr>
<td>Digit Symbol Test (DST)</td>
<td>86.8</td>
<td>8.9</td>
<td>87.0</td>
<td>8.8</td>
<td>-0.20</td>
<td>5.45</td>
<td>0.00</td>
</tr>
<tr>
<td>Letter-Number Test (LNT)</td>
<td>76.2</td>
<td>10.2</td>
<td>76.5</td>
<td>10.5</td>
<td>-0.28</td>
<td>6.75</td>
<td>0.00</td>
</tr>
<tr>
<td>Vocabulary Test</td>
<td>111.7</td>
<td>14.9</td>
<td>111.9</td>
<td>15.0</td>
<td>-0.25</td>
<td>5.75</td>
<td>0.00</td>
</tr>
<tr>
<td>Information G-Scale</td>
<td>38.3</td>
<td>7.2</td>
<td>38.5</td>
<td>7.3</td>
<td>-0.26</td>
<td>5.75</td>
<td>0.00</td>
</tr>
<tr>
<td>Information L-Scale</td>
<td>38.0</td>
<td>7.3</td>
<td>38.2</td>
<td>7.4</td>
<td>-0.19</td>
<td>5.35</td>
<td>0.00</td>
</tr>
<tr>
<td>Letter-Number Reading Test</td>
<td>53.4</td>
<td>6.4</td>
<td>53.6</td>
<td>6.5</td>
<td>-0.24</td>
<td>5.45</td>
<td>0.00</td>
</tr>
<tr>
<td>Digit Symbol Test</td>
<td>56.2</td>
<td>5.8</td>
<td>56.5</td>
<td>6.0</td>
<td>-0.30</td>
<td>5.95</td>
<td>0.00</td>
</tr>
<tr>
<td>Coding Test</td>
<td>16.8</td>
<td>2.1</td>
<td>16.9</td>
<td>2.2</td>
<td>-0.30</td>
<td>5.95</td>
<td>0.00</td>
</tr>
<tr>
<td>Sentence Comprehension Test</td>
<td>43.0</td>
<td>5.7</td>
<td>43.2</td>
<td>5.8</td>
<td>-0.32</td>
<td>6.05</td>
<td>0.00</td>
</tr>
<tr>
<td>Paced Auditory Serial Reaction</td>
<td>24.4</td>
<td>3.0</td>
<td>24.6</td>
<td>3.1</td>
<td>-0.65</td>
<td>11.45</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Implications

• Research
 - No identified pediatric mild TBI outcome study has used PVTs
 - Raises questions about previous studies that have documented persistent postconcussive cognitive deficits or cases of "postconcussion syndrome"

• Clinical
 - Noncredible presentations occur in children and teens
 - Need to be considered as one possible factor (among many) in the face of persistent problems after concussion, including sport-related concussion

Why do youth provide noncredible effort?

• Largely unexplored in the pediatric literature
• Compensation-seeking behavior is the most often discussed reason adults provide noncredible effort
• Many fewer children are apt to display biased responding for compensation specifically
• Innumerable other external and psychological incentive scenarios still exist including
 - change sport or social situation
 - avoid school/homework
 - get extra assistance school/mental health
 - change family dynamics
 - etc., etc., etc.
• How to manage youth who display prolonged recovery after concussion?
• It's as easy as figuring out…..

Complexity facing practitioners in the face of lingering postconcussive problems

Adapted from Iverson et al. (2008)

The Concussion Program
Michael W. Kirkwood, Ph.D., ABPP/CN
Concussion Program
Children’s Hospital Colorado
Department of Rehabilitation Medicine
Michael.Kirkwood@ChildrensColorado.org