Research

LIke ThisLIke ThisLIke This

Derrick  Rossi, PhD

Derrick-Rossi
Lab:
Rossi Laboratory
Research Center:
Dana-Farber/Boston Children’s Cancer and Blood Disorders Center
Program:
Program in Cellular and Molecular Medicine (PCMM)
Department:
Medicine Research
Division
Hematology/Oncology Research
Hospital Title:
Principal Investigator, Program in Cellular and Molecular Medicine
Academic Title:
Assistant Professor of Stem Cell and Regenerative Biology, Harvard Medical School
Research Focus Area:
Hematopoietic Stem Cells
Contact:
617-713-8900
Contact Via Email
Send an email to SendYour Name*Your Email Address*Subject*Comments*

Research Overview

Visit the Rossi Laboratory

The unique ability of stem cells to perpetuate themselves through self-renewal, and to give rise to mature effector cell types in a sustained fashion has positioned stem cell biology at the forefront of regenerative medicine -- the goal of which is to develop strategies capable of harnessing the clinical potential of stem cells to treat both heritable and acquired degenerative conditions. Hematopoietic stem cells (HSCs) are the only cells within the bone marrow that possess the ability to both differentiate to all blood lineages, and to self-renew for life. These properties, along with the remarkable ability of HSCs to engraft conditioned recipients upon intravenous transplantation, have established the clinical paradigm for stem cell use in regenerative medicine. Despite the enormous clinical potential of HSCs, surprisingly little is known about the mechanisms that regulate their fundamental properties of self-renewal and multi-potency. Our lab has a profound interest in understanding the mechanisms enabling self-renewal and multi-potency in HSCs, which we study using cellular, molecular, genetic and epigenetic approaches.

Another focus of the lab is in understanding the extent to which the aging of hematopoietic stem and progenitor cells contributes to the pathophysiological conditions arising in the aged hematopoietic system, which include; declining immuno-competence, diminished stress response, anemia, and cancer. To address this we are evaluating hematopoietic stem and progenitor cells in the context of aging in order to determine the cellular and molecular mechanisms underlying the aging of the hematopoietic system. In particular we are exploring the contribution of epigenetic regulatory mechanisms to hematopoietic stem cell biology and aging. We are also studying the mechanisms through which stem cells maintain genomic integrity, and examining how age-dependent DNA damage accrual impacts stem cell functional capacity to contribute to hematopoietic pathophysiology.

Numerous studies have shown that it is possible to experimentally reprogram the cellular identity of one cell type to another. One approach to effect cellular reprogramming involves enforcing expression of defined transcriptional regulators important for specifying one cell type in a different cell type in order to convert its fate. This methodology is perhaps best exemplified by the generation of induced pluripotent stem (iPS) cells from a variety of differentiated cell types by the ectopic expression of a small number of defined factors. This approach is also proving to be a viable method to reprogram a variety of cell types to alternative fates. Our lab is pursuing several lines of investigation aimed at reprogramming the cellular identity of a number of cell types into clinically useful cell types through various approaches including the use of novel technologies.

About Dr. Rossi

Dr. Rossi received his Ph.D. from the University of Helsinki, Finland in 2003, and did his post-doctoral work in the lab of Dr. Irving Weissman at Stanford University. Dr. Rossi joined the IDI in 2007 as a Junior Investigator, and holds an appointment as Assistant professor in the Department of Pathology at Harvard Medical School. He is also a principal Faculty member of the Harvard Stem Cell Institute (HSCI). Dr. Rossi was awarded a K99/R00 Pathways to Independence award from the NIH and the National Institutes of Aging in 2006, and is also supported by grants from the Harvard Stem Cell Institute, the Helmsley Foundation, and GlaxoSmithKline.

Key Publications

  • Bock, C, Beerman I, Rossi DJ, Meissner, A.  DNA methylation dynamics during in vivo differentiation of blood and skin stem cells.  Mol Cell. 2012 Jul 24. [Epub ahead of print] 
  • Warren, L.A., Manos, P, Ahfeldt, T, Loh, YH, Li, H, Lau, F, Ebina, W, Mandal, PK, Smith, ZD, Meissner, A, Daley, GQ, Brack, AS, Collins, JJ, Cowan, CA, Schlaeger, TM, Rossi, DJ. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell. 2010 Nov 5;7(5):618-30. Epub 2010 Sep 30’
  • Beerman I, Bhattacharya D, Zandi S, Sigvardsson M, Weissman IL, Bryder D, Rossi DJ. Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion. Proc Natl Acad Sci USA. 2010 Mar 23;107(12):5465-70. Epub 2010 Mar 18.
  • Rossi DJ, Bryder D, Seita J, Nussenzweig A, Hoeijmakers J, Weissman IL.  Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age.  Nature. 2007 Jun 7;447(7145):725-9.
  • Rossi DJ, Jamieson CH, Weissman IL. Stems cells and the pathways to aging and cancer.  Cell. 2008 Feb 22;132(4):681-96. Review.
 

 

LIke ThisLIke ThisLIke This

Related Laboratory

Rossi Laboratory

Learn more

RELATED RESEARCH CENTER

Dana-Farber/Boston Children’s Cancer and Blood Disorders Center

Dana-Farber/Children's Hospital Cancer Center (DF/CHCC) is one of the top research centers in the world for pediatric cancers and blood diseases. It brings together laboratory scientists and clinical researchers from Dana-Farber Cancer Institute and Boston Children’s Hospital in a single program. We investigate pediatric cancers and non-malignant blood disorders from every angle—from examining cells under the microscope to tracking the effectiveness of current drug regimens using the most advanced molecular methods—so that we can create better treatments for children seen here and around the world.

Learn more
Close