Research

LIke ThisLIke ThisLIke This

Gabriel  Kreiman, PhD

Gabriel Kreiman
Lab:
Kreiman Laboratory
Research Center:
F.M. Kirby Neurobiology Center
Program:
Neurobiology Program
Department:
Ophthalmology Research
Hospital Title:
Assistant in Ophthalmology
Academic Title:
Assistant Professor in Ophthalmology, Harvard Medical School
Research Focus Area:
Computations in the brain and the functional architecture of neuronal circuits
Contact Via Email
Send an email to SendYour Name*Your Email Address*Subject*Comments*

Research Overview

The intricacy of the neuronal circuitry makes the brain the most complex and fascinating system ever studied by Science. The Kreiman lab is interested in understanding how biological networks encode, process and transmit information. There are two main lines of research in the lab: (i) how circuits of neurons represent visual information and (ii) how gene expression is orchestrated, with a particular emphasis on gene expression in the nervous system. The lab uses a combination of mathematical, computational and experimental tools.

Please visit the Kreiman lab webpage for further information, publications, ongoing projects and job opportunities.

The Kreiman Lab combines high-resolution neurophysiology of the human brain and computational models to understand the processing of visual information--from perception to cognition.

About Gabriel Kreiman

Gabriel Kreiman received his MSc and PhD degree from the California Institute of Technology (Caltech) and subsequently worked as a research fellow at the Massachusetts Institute of Technology (MIT). The Kreiman lab is interested in the neuronal circuits and algorithms responsible for visual object recognition and memory formation. Visual object recognition is crucial for most everyday tasks including face identification, reading and navigation. The Kreiman lab combines neurophysiology, psychophysics and theoretical/computational modeling to understand the neuronal circuits, algorithms and computations performed by the visual system and to develop biophysically-inspired computational approaches to machine vision and memory formation.

Key Publications

  • Fried I, Mukamel R, Kreiman G. (2011). Internally Generated Preactivation of Single Neurons in Human Medial Frontal Cortex Predicts Volition. Neuron. 69: 548-562.

  • Agam Y, Liu H, Pappanastassiou A, Buia C, Golby AJ, Madsen JR, Kreiman, G. (2010). Robust selectivity to two-object images in human visual cortex. Current Biology. 20: 872-879.
      
  • Kim TK*, Hemberg M*, Gray JM*, Costa A, Bear DM, Wu J, Harmin DA, Laptewicz, M, Barbara-Haley K, Kuersten S, Markenscoff-Papadimitriou E, Kuhl D, Bito H, Worley PF, Kreiman G, Greenberg ME. Widespread transcription at thousands of enhancers during activity-dependent gene expression in neurons. Nature 2010 May 13; 465(7295):182-7. (* = equal contribution)

  • Liu H, Agam Y, Madsen JR, Kreiman G. Timing, timing, timing: Fast decoding of object information from intracranial field potentials in human visual cortex. Neuron 2009 Apr 30; 62(2):281-90.
      
  • Serre T, Kreiman G, Kouh M, Cadieu C, Knoblich U, Poggio T. A quantitative theory of immediate visual recognition. Prog Brain Res 2007; 165:33-56.

  • Kreiman G. Single neuron approaches to human vision and memories. Curr Opin Neurobiol 2007 Aug; 17(4):471-5.

  • Quiroga RQ, Reddy L, Kreiman G, Koch C, Fried I. Invariant visual representation by single neurons in the human brain. Nature 2005 Jun 23; 435(7045):1102-7.

  • Hung CP, Kreiman G, Poggio T, DiCarlo JJ. Fast read-out of object identity from macaque inferior temporal cortex. Science 2005 Nov 4; 310(5749):863-6.

Publications

Publications powered by Harvard Catalyst Profiles
  1. Gómez-Laberge C, Smolyanskaya A, Nassi JJ, Kreiman G, Born RT. Bottom-Up and Top-Down Input Augment the Variability of Cortical Neurons. Neuron. 2016 Aug 3; 91(3):540-7.
  2. Tang S, Hemberg M, Cansizoglu E, Belin S, Kosik K, Kreiman G, Steen H, Steen J. f-divergence cutoff index to simultaneously identify differential expression in the integrated transcriptome and proteome. Nucleic Acids Res. 2016 Jun 2; 44(10):e97.
  3. Tang H, Yu HY, Chou CC, Crone NE, Madsen JR, Anderson WS, Kreiman G. Cascade of neural processing orchestrates cognitive control in human frontal cortex. Elife. 2016; 5.
  4. Miconi T, Groomes L, Kreiman G. There's Waldo! A Normalization Model of Visual Search Predicts Single-Trial Human Fixations in an Object Search Task. Cereb Cortex. 2016 Jul; 26(7):3064-82.
  5. Madhavan R, Millman D, Tang H, Crone NE, Lenz FA, Tierney TS, Madsen JR, Kreiman G, Anderson WS. Decrease in gamma-band activity tracks sequence learning. Front Syst Neurosci. 2014; 8:222.
  6. Singer JM, Madsen JR, Anderson WS, Kreiman G. Sensitivity to timing and order in human visual cortex. J Neurophysiol. 2015 Mar 1; 113(5):1656-69.
  7. Prabakaran S, Hemberg M, Chauhan R, Winter D, Tweedie-Cullen RY, Dittrich C, Hong E, Gunawardena J, Steen H, Kreiman G, Steen JA. Quantitative profiling of peptides from RNAs classified as noncoding. Nat Commun. 2014; 5:5429.
  8. Tang H, Buia C, Madhavan R, Crone NE, Madsen JR, Anderson WS, Kreiman G. Spatiotemporal dynamics underlying object completion in human ventral visual cortex. Neuron. 2014 Aug 6; 83(3):736-48.
  9. Nassi JJ, Gómez-Laberge C, Kreiman G, Born RT. Corticocortical feedback increases the spatial extent of normalization. Front Syst Neurosci. 2014; 8:105.
  10. Singer JM, Kreiman G. Short temporal asynchrony disrupts visual object recognition. J Vis. 2014; 14(5):7.
  11. Show all
  12. Bansal AK, Madhavan R, Agam Y, Golby A, Madsen JR, Kreiman G. Neural dynamics underlying target detection in the human brain. J Neurosci. 2014 Feb 19; 34(8):3042-55.
  13. Murugan R, Kreiman G. Theory on the coupled stochastic dynamics of transcription and splice-site recognition. PLoS Comput Biol. 2012; 8(11):e1002747.
  14. Bansal AK, Singer JM, Anderson WS, Golby A, Madsen JR, Kreiman G. Temporal stability of visually selective responses in intracranial field potentials recorded from human occipital and temporal lobes. J Neurophysiol. 2012 Dec; 108(11):3073-86.
  15. Hemberg M, Gray JM, Cloonan N, Kuersten S, Grimmond S, Greenberg ME, Kreiman G. Integrated genome analysis suggests that most conserved non-coding sequences are regulatory factor binding sites. Nucleic Acids Res. 2012 Sep; 40(16):7858-69.
  16. Burbank KS, Kreiman G. Depression-biased reverse plasticity rule is required for stable learning at top-down connections. PLoS Comput Biol. 2012; 8(3):e1002393.
  17. Kreiman G, Maunsell JH. Nine criteria for a measure of scientific output. Front Comput Neurosci. 2011; 5:48.
  18. Tang H, Kreiman G. Face recognition: vision and emotions beyond the bubble. Curr Biol. 2011 Nov 8; 21(21):R888-90.
  19. Murugan R, Kreiman G. On the minimization of fluctuations in the response times of autoregulatory gene networks. Biophys J. 2011 Sep 21; 101(6):1297-306.
  20. Hemberg M, Kreiman G. Conservation of transcription factor binding events predicts gene expression across species. Nucleic Acids Res. 2011 Sep 1; 39(16):7092-102.
  21. Fried I, Mukamel R, Kreiman G. Internally generated preactivation of single neurons in human medial frontal cortex predicts volition. Neuron. 2011 Feb 10; 69(3):548-62.
  22. Anderson WS, Kreiman G. Neuroscience: what we cannot model, we do not understand. Curr Biol. 2011 Feb 8; 21(3):R123-5.
  23. Kreiman G. Decoding ensemble activity from neurophysiological recordings in the temporal cortex. Conf Proc IEEE Eng Med Biol Soc. 2011; 2011:5904-7.
  24. Blumberg J, Kreiman G. How cortical neurons help us see: visual recognition in the human brain. J Clin Invest. 2010 Sep; 120(9):3054-63.
  25. Agam Y, Liu H, Papanastassiou A, Buia C, Golby AJ, Madsen JR, Kreiman G. Robust selectivity to two-object images in human visual cortex. Curr Biol. 2010 May 11; 20(9):872-9.
  26. Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, Harmin DA, Laptewicz M, Barbara-Haley K, Kuersten S, Markenscoff-Papadimitriou E, Kuhl D, Bito H, Worley PF, Kreiman G, Greenberg ME. Widespread transcription at neuronal activity-regulated enhancers. Nature. 2010 May 13; 465(7295):182-7.
  27. Quian Quiroga R, Kreiman G. Measuring sparseness in the brain: comment on Bowers (2009). Psychol Rev. 2010 Jan; 117(1):291-7.
  28. Singer J, Kreiman G. Toward unmasking the dynamics of visual perception. Neuron. 2009 Nov 25; 64(4):446-7.
  29. Rasch M, Logothetis NK, Kreiman G. From neurons to circuits: linear estimation of local field potentials. J Neurosci. 2009 Nov 4; 29(44):13785-96.
  30. Liu H, Agam Y, Madsen JR, Kreiman G. Timing, timing, timing: fast decoding of object information from intracranial field potentials in human visual cortex. Neuron. 2009 Apr 30; 62(2):281-90.
  31. Meyers EM, Freedman DJ, Kreiman G, Miller EK, Poggio T. Dynamic population coding of category information in inferior temporal and prefrontal cortex. J Neurophysiol. 2008 Sep; 100(3):1407-19.
  32. Kreiman G. Single unit approaches to human vision and memory. Curr Opin Neurobiol. 2007 Aug; 17(4):471-5.
  33. Leamey CA, Glendining KA, Kreiman G, Kang ND, Wang KH, Fassler R, Sawatari A, Tonegawa S, Sur M. Differential gene expression between sensory neocortical areas: potential roles for Ten_m3 and Bcl6 in patterning visual and somatosensory pathways. Cereb Cortex. 2008 Jan; 18(1):53-66.
  34. Serre T, Kreiman G, Kouh M, Cadieu C, Knoblich U, Poggio T. A quantitative theory of immediate visual recognition. Prog Brain Res. 2007; 165:33-56.
  35. Tropea D, Kreiman G, Lyckman A, Mukherjee S, Yu H, Horng S, Sur M. Gene expression changes and molecular pathways mediating activity-dependent plasticity in visual cortex. Nat Neurosci. 2006 May; 9(5):660-8.
  36. Kreiman G, Hung CP, Kraskov A, Quiroga RQ, Poggio T, DiCarlo JJ. Object selectivity of local field potentials and spikes in the macaque inferior temporal cortex. Neuron. 2006 Feb 2; 49(3):433-45.
  37. Hung CP, Kreiman G, Poggio T, DiCarlo JJ. Fast readout of object identity from macaque inferior temporal cortex. Science. 2005 Nov 4; 310(5749):863-6.
  38. Quiroga RQ, Reddy L, Kreiman G, Koch C, Fried I. Invariant visual representation by single neurons in the human brain. Nature. 2005 Jun 23; 435(7045):1102-7.
  39. Yeo G, Holste D, Kreiman G, Burge CB. Variation in alternative splicing across human tissues. Genome Biol. 2004; 5(10):R74.
  40. Crick F, Koch C, Kreiman G, Fried I. Consciousness and neurosurgery. Neurosurgery. 2004 Aug; 55(2):273-281; discussion 281-2.
  41. Kreiman G. Identification of sparsely distributed clusters of cis-regulatory elements in sets of co-expressed genes. Nucleic Acids Res. 2004; 32(9):2889-900.
  42. Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R, Hayakawa M, Kreiman G, Cooke MP, Walker JR, Hogenesch JB. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci U S A. 2004 Apr 20; 101(16):6062-7.
  43. Kreiman G, Fried I, Koch C. Single-neuron correlates of subjective vision in the human medial temporal lobe. Proc Natl Acad Sci U S A. 2002 Jun 11; 99(12):8378-83.
  44. Rees G, Kreiman G, Koch C. Neural correlates of consciousness in humans. Nat Rev Neurosci. 2002 Apr; 3(4):261-70.
  45. Krahe R, Kreiman G, Gabbiani F, Koch C, Metzner W. Stimulus encoding and feature extraction by multiple sensory neurons. J Neurosci. 2002 Mar 15; 22(6):2374-82.
  46. Zirlinger M, Kreiman G, Anderson DJ. Amygdala-enriched genes identified by microarray technology are restricted to specific amygdaloid subnuclei. Proc Natl Acad Sci U S A. 2001 Apr 24; 98(9):5270-5.
  47. Kreiman G, Koch C, Fried I. Imagery neurons in the human brain. Nature. 2000 Nov 16; 408(6810):357-61.
  48. Kreiman G, Koch C, Fried I. Category-specific visual responses of single neurons in the human medial temporal lobe. Nat Neurosci. 2000 Sep; 3(9):946-53.
  49. Ouyang Y, Rosenstein A, Kreiman G, Schuman EM, Kennedy MB. Tetanic stimulation leads to increased accumulation of Ca(2+)/calmodulin-dependent protein kinase II via dendritic protein synthesis in hippocampal neurons. J Neurosci. 1999 Sep 15; 19(18):7823-33.
LIke ThisLIke ThisLIke This

Related Laboratory

Kreiman Laboratory

Learn more

RELATED RESEARCH CENTER

F.M. Kirby Neurobiology Center

The F.M. Kirby Neurobiology Center, together with the Neurobiology Program at Boston Children’s Hospital, is the largest basic neuroscience research enterprise at a U.S. hospital. It incorporates basic and translational neuroscience research, focusing primarily on developmental neurobiology.

Learn more
Close