John D Mably PhD

LIke ThisLIke ThisLIke ThisLIke ThisLIke This

Characterizing the cellular function of cerebral cavernous malformation associated genes

Cerebral Cavernous Malformations (CCMs) are vascular lesions that originate in the central nervous system. They appear as tangles of malformed blood vessels located in the brain and/or spinal cord. This collection of dilated, irregularly shaped small blood vessels (capillaries) often exhibits a characteristic honeycomb-like pattern. Although most are asymptomatic until the second or third decade of life they may also be detected in children where they can have devastating clinical consequences. Because of the dramatic dilation of the blood vessels within the lesion, the walls of the vessels are weak and also lack supporting tissue. For this reason, they are prone to bleeding and when observed under a microscope appear as large, bloodfilled caverns (for this reason, are also called cavernomas or cavernous angiomas). Unlike an aneurysm which is characterized by sudden rupture and acute clinical impact, the characteristic feature of a CCM is slow bleeding or oozing. Greater than 30% of patients with these lesions eventually develop symptoms which can range from seizures or hemorrhagic stroke to severe neurologic deficit. Mutations in three genes have been associated with this disease through the study of inherited forms. The Mably laboratory uses zebrafish to model human cardiovascular disease and I have identified and characterized zebrafish mutants with defects in two of these CCM genes (CCM1 and CCM2 respectively, in zebrafish). Additionally, through analysis of a third zebrafish mutant with an indistinguishable phenotype,Dr. Mably has identified the gene, a transmembrane molecule that is a novel component of the CCM pathway. The Mably Lab will use the zebrafish models to characterize the cellular functions of these proteins. Additionally,they will identify molecules downstream of the Heg protein that are involved in the formation of the CCM defects in the zebrafish models. This approach will help identify new targets for non-surgical therapies for CCM.

Request an Appointment

If this is a medical emergency, please dial 9-1-1. This form should not be used in an emergency.

Patient Information
Date of Birth:
Contact Information
Appointment Details
Send RequestIf you do not see the specialty you are looking for, please call us at: 617-355-6000.International visitors should call International Health Services at +1-617-355-5209.
Please complete all required fields

This department is currently not accepting appointment requests online. Please call us at: 617-355-6000. International +1-617-355-6000.

This department is currently not accepting appointment requests online. Please call us at: 617-355-6000. International +1-617-355-6000.

Thank you.

Your request has been successfully submitted

You will be contacted within 1 business day.

If you have questions or would like more information, please call:

617-355-6000 +1-617-355-6000
Find a Doctor
Search by Clinician's Last Name or Specialty:
Select by Location:
Search by First Letter of Clinician's Last Name: *ABCDEFGHIJKLMNOPQRSTUVWXYZ
Condition & Treatments
Search for a Condition or Treatment:
View allSearch
The future of pediatrics will be forged by thinking differently, breaking paradigms and joining together in a shared vision of tackling the toughest challenges before us.”
- Sandra L. Fenwick, President and CEO